US 2005/0005261 Al

[0355] A destructor implementation has a one-to-one asso-
ciation relationship with a destructor descriptor that is the
destructor descriptor for which the destructor implementa-
tion provides an implementation. A destructor implementa-
tion has zero-to-many association relationship with precon-
dition constraints that are each an implementation of a
constraint to restrict some environmental condition or state
of the model implementation before the execution of the
destructor implementation. These types of constraints might
check for the installation of a security manager, the existence
of a database connection, or some other environmental
condition. These constraints might also check to see if a
model implementation has entered into the correct state to
allow the destruction. Constraints related to the parameter
values are held by the parameter descriptors.

[0356] A destructor implementation includes a destroy()
operation that is the method call to perform a destruction.

[0357] An implementation change event is fired whenever
an attribute value is added, changed or removed from the
destructor implementation.

[0358] A destruction event with the status of the precon-
ditions is fired to all interested parties when the destroy()
method is called. A second event is sent at the successful
completion of the operations related to destruction. A third
event is fired only if a failure occurs during the execution of
the destruction.

[0359] A destructor instance of the present invention may
be unnecessary for many applications. The destructor imple-
mentation performs the work associated with destruction.
The destructor implementation can always be retrieved from
an instance by going through the metamodel implementation
for that instance. A destructor instance does provide support
for activities that model current reflection packages avail-
able in many programming languages.

[0360] A destructor instance has a one-to-one association
relationship with a destructor implementation that is the
implementation for which the destructor instance is an
instance

[0361] A model implementation of the present invention
extends another implementation. The virtual model imple-
mentation is defined by a model descriptor. The model
implementation object contains implementations for each
feature accessed by a model accessor. As discussed above,
this may be as many as one feature for each feature in the
model descriptor, or it may be less if the model accessor uses
some non-virtual features.

[0362] A model implementation has a one-to-one associa-
tion relationship with a metamodel that is the metamodel for
which the model implementation provides an implementa-
tion. There exists a one-to-one relationship for each descrip-
tor in the metamodel to each child implementation in this
model implementation. A model implementation has a one-
to-one specialization relationship with a parent model imple-
mentation that is the parent model implementation that is
configured to give implementations for all the features of the
parent model descriptor. This model implementation del-
egates to its parent model implementation wherever it inher-
its features from it parent and does not override those
features. A model implementation has a zero-to-one asso-
ciation relationship with a description that provides details
about the hint for the correct use of this implementation and

Jan. 6, 2005

details about the implementation. A description is often
useful for human users and automated documentation. This
description is different from the description on the meta-
model object. That description provides details about how
the model is designed and why; this description provides
details on use of the implementation. A model implementa-
tion has a one-to-one association relationship with a version
that provides details about the number of modifications that
have been made to the model implementation. A model
implementation has a one-to-many aggregation relationship
with a constructor implementation that provides a mecha-
nism for creating new instances of the model described by
the model descriptor. Several different constructors may
exist, each of which uses a different number and type of
arguments. A model implementation has a one-to-one aggre-
gation relationship with a destructor implementation that
provides a mechanism to destroy an instance of the model
being described. Depending on the persistence rules asso-
ciated with an implementation, this may permanently
destroy the instance from the persistence store, or it may
simply remove the representation of that persisted object
from memory. The implementer will document the level of
destruction. A model implementation has a zero-to-many
aggregation relationship with static attribute instances that
are attribute instances are held by a model implementation
and therefore do not require an instance of the model in
order to be accessed. These instances allow the value to be
set and retrieved where the attribute is shared among all
instances of the model. A model implementation has a
zero-to-many aggregation relationship with instance
attribute implementations that are attribute implementations
that require an instance of the model in order to be accessed.
These implementations allow the value to be set and
retrieved on one specific instance. A model implementation
has a zero-to-many aggregation relationship with static
operation implementations that are operation implementa-
tions that do not require an instance of the model in order to
be executed. These implementations provide a mechanism
to execute the operation. A model implementation has a
zero-to-many aggregation relationship with instance opera-
tion implementations that are operation implementations
that require an instance of the model in order to be executed.
These implementations provide a mechanism to execute the
operation. A model implementation has a zero-to-many
association relationship with signal implementations that
provide the mechanism to register an appropriate instance’s
interest in receiving notification when the model generates
an event. Also provides the mechanism to remove interest in
receiving notification for an event. The instance registering
interest in receiving event notification must implement the
appropriate interface to match the listener type described in
the signal descriptor. Signal implementations held by the
model implementation are generally all of or a subset of
those signals held by each attribute and operation (since the
attributes and operations directly generate events and the
model does not).

[0363] To register interest in events fired by an instance of
a model implementation, use the signal implementations.
This type of use applies to all implementations.

[0364] An implementation change event is fired whenever
an attribute value is added, changed or removed from the
model implementation. These attribute events relate to the
structure of the model implementation, not the values held
by the attribute implementations.

